
Architecture of Enterprise Applications VIII
Testability and Usability

Haopeng Chen

REliable, INtelligent and Scalable Systems Group (REINS)

Shanghai Jiao Tong University

Shanghai, China

e-mail: chen-hp@sjtu.edu.cn

REliable, INtelligent & Scalable Systems
TESTABILITY

• Software testability refers to the ease with which software
can be made to demonstrate its faults through (typically
execution-based) testing.

• For a system to be properly testable, it must be possible to
control each component's internal state and inputs and then
to observe its outputs.

REliable, INtelligent & Scalable Systems
TESTABILITY

• Testing is done by various developers, testers, verifiers, or
users and is the last step of various parts of the software life
cycle.

• Portions of the code, the design, or the complete system may
be tested.

• The response measures for testability deal with
– how effective the tests are in discovering faults

– and how long it takes to perform the tests to some desired level of
coverage.

REliable, INtelligent & Scalable Systems
TESTABILITY

• Source of stimulus.
– The testing is performed by unit testers, integration testers, system

testers, or the client. A test of the design may be performed by other
developers or by an external group.

• Stimulus.
– The stimulus for the testing is that a milestone in the development

process is met.

• Artifact.
– A design, a piece of code, or the whole system is the artifact being tested.

• Environment.
– The test can happen at design time, at development time, at compile time,

or at deployment time.

REliable, INtelligent & Scalable Systems
TESTABILITY

• Response.
– Since testability is related to observability and controllability, the desired

response is that the system can be controlled to perform the desired tests
and that the response to each test can be observed.

• Response measure.
– Response measures are

• the percentage of statements that have been executed in some test,

• the length of the longest test chain (a measure of the difficulty of performing
the tests),

• and estimates of the probability of finding additional faults.

REliable, INtelligent & Scalable Systems
TESTABILITY

Portion of Scenario Possible Values

Source Unit developer

Increment integrator

System verifier

Client acceptance tester

System user

Stimulus Analysis, architecture, design, class, subsystem integration

completed; system delivered

Artifact Piece of design, piece of code, complete application

Environment At design time, at development time, at compile time, at

deployment time

Response Provides access to state values; provides computed values;

prepares test environment

Response Measure Percent executable statements executed

Probability of failure if fault exists

Time to perform tests

Length of longest dependency chain in a test

Length of time to prepare test environment

REliable, INtelligent & Scalable Systems
TESTABILITY

REliable, INtelligent & Scalable Systems
Testability Tactics

• The goal of tactics for testability is to allow for easier testing when
an increment of software development is completed.

• Architectural techniques for enhancing the software testability have
not received as much attention as more mature fields such as
modifiability, performance, and availability,

• but, since testing consumes such a high percentage of system
development cost, anything the architect can do to reduce this cost
will yield a significant benefit.

Goal of testability tactics

REliable, INtelligent & Scalable Systems
Testability Tactics

• Although we included design reviews as a testing technique,
we are concerned only with testing a running system.
– The goal of a testing regimen is to discover faults. This requires that

input be provided to the software being tested and that the output be
captured.

• Executing the test procedures requires some software to
provide input to the software being tested and to capture the
output.
– This is called a test harness.
– A question we do not consider here is the design and generation of the

test harness. In some systems, this takes substantial time and expense.

• We discuss two categories of tactics for testing: providing
input and capturing output, and internal monitoring.

REliable, INtelligent & Scalable Systems
Testability Tactics-INPUT/OUTPUT

• There are three tactics for managing input and output for
testing.
– Record/playback.

• Record/playback refers to both capturing information crossing an interface
and using it as input into the test harness..

– Separate interface from implementation.
• Separating the interface from the implementation allows substitution of

implementations for various testing purposes.

– Specialize access routes/interfaces.
• Having specialized testing interfaces allows the capturing or specification

of variable values for a component through a test harness as well as
independently from its normal execution.

REliable, INtelligent & Scalable Systems
Testability Tactics-INPUT/OUTPUT

• 在RUBiS中，其Client层实际上就采用了和录制/回放
策略类似的策略，模拟指定数量的用户对RUBiS系统

进行访问，以测试系统性能。它参数化的部分包括
状态迁移的概率和用户思考时间等。

REliable, INtelligent & Scalable Systems
Testability Tactics-internal monitoring

• A component can implement tactics based on internal state to
support the testing process.
– Built-in monitors.

• The component can maintain state, performance load, capacity, security, or
other information accessible through an interface.

• 内部监视策略是通过内置监视器来实现的，其目的是要通过接口向外提供
系统内部的状态。

• 例如，在很多设备中，都有开机自检功能，它会在加电时自检系统状态，
然后以指示灯或屏幕显示的方式显示测试结果；还有的设备具有周期性自
检功能，以及时发现运行中的设备出现的故障。内部监视通常会向系统提
供一个标准输入，然后观察其输出是否符合预期值，而这个输入和输出对
用户是透明的，并且不会对系统造成任何影响。

REliable, INtelligent & Scalable Systems
Testability Tactics-Summary

REliable, INtelligent & Scalable Systems
USABILITY

• Usability is concerned with
– how easy it is for the user to accomplish a desired task and the kind of user

support the system provides.

• It can be broken down into the following areas:
– Learning system features.
– Using a system efficiently.
– Minimizing the impact of errors.
– Adapting the system to user needs.
– Increasing confidence and satisfaction.

REliable, INtelligent & Scalable Systems
USABILITY

• The normal development process detects usability problems
through building prototypes and user testing.

• The later a problem is discovered and the deeper into the
architecture its repair must be made, the more the repair is
threatened by time and budget pressures.

REliable, INtelligent & Scalable Systems
USABILITY

• Source of stimulus.
– The end user is always the source of the stimulus.

• Stimulus.
– The stimulus is that the end user wishes to use a system

efficiently, learn to use the system, minimize the impact of
errors, adapt the system, or feel comfortable with the system.

• Artifact.
– The artifact is always the system.

• Environment.
– The user actions with which usability is concerned always

occur at runtime or at system configuration time.

REliable, INtelligent & Scalable Systems
USABILITY

• Response.
– The system should either provide the user with the

features needed or anticipate the user's needs.

• Response measure.
– The response is measured by task time, number of errors,

number of problems solved, user satisfaction, gain of user
knowledge, ratio of successful operations to total
operations, or amount of time/data lost when an error
occurs.

REliable, INtelligent & Scalable Systems
USABILITY

Portion of Scenario Possible Values

Source End user

Stimulus Wants to

learn system features; use system efficiently; minimize

impact of errors; adapt system; feel comfortable

Artifact System

Environment At runtime or configure time

REliable, INtelligent & Scalable Systems
USABILITY

Response System provides one or more of the following responses:

to support "learn system features"

help system is sensitive to context;

interface is familiar to user;

interface is usable in an unfamiliar context

to support "use system efficiently":

aggregation of data and/or commands;

re-use of already entered data and/or commands;

support for efficient navigation within a screen;

distinct views with consistent operations;

comprehensive searching;

multiple simultaneous activities

to "minimize impact of errors":

undo, cancel, recover from system failure, recognize

and correct user error, retrieve forgotten password,

verify system resources

to "adapt system":

customizability; internationalization

to "feel comfortable":

display system state; work at the user's pace

REliable, INtelligent & Scalable Systems
USABILITY

Response Measure Task time, number of errors, number of problems solved,

user satisfaction, gain of user knowledge, ratio of successful

operations to total operations, amount of time/data lost

REliable, INtelligent & Scalable Systems
Usability Tactics

• Usability is concerned with how easy it is for the user to
accomplish a desired task and the kind of support the system
provides to the user.

• Two types of tactics support usability, each intended for two
categories “users”.
– The first category, Runtime, includes those that support the user during

system execution.
– The second category is based on the iterative nature of user interface

design and supports the interface developer at design time.

Goal of runtime usability tactics

REliable, INtelligent & Scalable Systems
Usability Tactics-Runtime tactics

• Once a system is executing, usability is enhanced
– by giving the user feedback as to what the system is doing
– and by providing the user with the ability to issue usability-based

commands
• such as those we saw. For example, cancel, undo, aggregate, and show

multiple views support the user in either error correction or more
efficient operations.

– Maintain a model of the task.
• The task model is used to determine context so the system can have

some idea of what the user is attempting and provide various kinds of
assistance.

• For example, knowing that sentences usually start with capital letters
would allow an application to correct a lower-case letter in that
position.

REliable, INtelligent & Scalable Systems
Usability Tactics-Runtime tactics

– Maintain a model of the user.
• In this case, the model maintained is of the user.
• It determines the user's knowledge of the system, the user's behavior in

terms of expected response time, and other aspects specific to a user or
a class of users.

• For example, maintaining a user model allows the system to pace
scrolling so that pages do not fly past faster than they can be read.

– Maintain a model of the system.
• In this case, the model maintained is that of the system.
• It determines the expected system behavior so that appropriate

feedback can be given to the user.
• The system model predicts items such as the time needed to complete

current activity.

REliable, INtelligent & Scalable Systems
Usability Tactics- design time tactics

• User interfaces are typically revised frequently during the
testing process.
– That is, the usability engineer will give the developers revisions to

the current user interface design and the developers will implement
them.

• This leads to a tactic that is a refinement of the modifiability
tactic of semantic coherence:
– Separate the user interface from the rest of the application.

• Model-View-Controller

• Presentation-Abstraction-Control

REliable, INtelligent & Scalable Systems
Usability Tactics- design time tactics

• RUBiS实际上并未涉及易用性方面的内容，因为易用性并
不在它的考虑范围内。

• 但是我们可以举另外一个例子，例如Microsoft Office套件
的软件，例如office，就有undo和redo这样的功能，这就是
易用性方面的典型例子。

• 看起来这个功能似乎很琐碎，很难认为其是架构设计层面
需要考虑的问题，但其实并非如此。
– 当undo和redo可以支持很多步时，就会在系统中占用许多内存资

源来缓存各个中间版本，这就需要我们对缓存内容的数据结构和存
储方式进行架构层面的设计了。因此，易用性有些是一些关注于用
户体验的细节，但是有些则是关系到软件架构层面的问题，我们需
要认真分析，区别对待。

REliable, INtelligent & Scalable Systems
Usability Tactics-Summary

REliable, INtelligent & Scalable Systems
Quality Attribute Stimuli

Availability Unexpected event, nonoccurrence of expected event

Modifiability Request to add/delete/change/vary functionality,
platform, quality attribute, or capacity

Performance Periodic, stochastic, or sporadic

Security Tries to
display, modify, change/delete information, access, or
reduce availability to system services

Testability Completion of phase of system development

Usability Wants to
learn system features, use a system efficiently, minimize
the impact of errors, adapt the system, feel comfortable

REliable, INtelligent & Scalable Systems
Other System Quality Attributes

• A number of other attributes can be found in the attribute taxonomies in the
research literature and in standard software engineering textbooks, and we have
captured many of these in our scenarios.
– For example, scalability is often an important attribute, but in our discussion here

scalability is captured by modifying system capacity—the number of users supported,
for example. Portability is captured as a platform modification.

• If some quality attribute—say interoperability—is important to your organization,
it is reasonable to create your own general scenario for it.
– For interoperability, a stimulus might be a request to interoperate with another system,

a response might be a new interface or set of interfaces for the interoperation, and a
response measure might be the difficulty in terms of time, the number of interfaces to
be modified, and so forth.

REliable, INtelligent & Scalable Systems
Business Qualities

• In addition to the qualities that apply directly to a system, a number of
business quality goals frequently shape a system's architecture. These goals
center on cost, schedule, market, and marketing considerations.

– Time to market.
• If there is competitive pressure or a short window of opportunity for a

system or product, development time becomes important.

– Cost and benefit.
• The development effort will naturally have a budget that must not be

exceeded.

– Projected lifetime of the system.
• If the system is intended to have a long lifetime, modifiability, scalability, and

portability become important.

REliable, INtelligent & Scalable Systems
Business Qualities

– Targeted market.
• For general-purpose (mass-market) software, the platforms on which a

system runs as well as its feature set will determine the size of the potential
market.

– Rollout schedule.
• If a product is to be introduced as base functionality with many features

released later, the flexibility and customizability of the architecture are
important.

– Integration with legacy systems.
• If the new system has to integrate with existing systems, care must be taken

to define appropriate integration mechanisms.

REliable, INtelligent & Scalable Systems
Architecture Qualities

• Conceptual integrity is the underlying theme or vision that unifies the design
of the system at all levels.

• Correctness and completeness are essential for the architecture to allow for all
of the system's requirements and runtime resource constraints to be met.

• Buildability allows the system to be completed by the available team in a
timely manner and to be open to certain changes as development progresses.

REliable, INtelligent & Scalable Systems

Relationship of Tactics
to Architectural Patterns

• In fact, an architect usually chooses a pattern or a collection of patterns
designed to realize one or more tactics. However, each pattern implements
multiple tactics, whether desired or not.

The Active Object design pattern decouples method execution from
method invocation to enhance concurrency and simplify synchronized access to
objects that reside in their own thread of control.

• The pattern consists of six elements:
– a proxy, which provides an interface that allows clients to invoke publicly accessible

methods on an active object;
– a method request, which defines an interface for executing the methods of an active object;
– an activation list, which maintains a buffer of pending method requests;
– a scheduler, which decides what method requests to execute next;
– a servant, which defines the behavior and state modeled as an active object;
– and a future, which allows the client to obtain the result of the method invocation.

REliable, INtelligent & Scalable Systems

Relationship of Tactics
to Architectural Patterns

• The motivation for this pattern is to enhance concurrency—a performance
goal. Thus, its main purpose is to implement the "introduce concurrency"
performance tactic.

– Information hiding (modifiability). Each element chooses the responsibilities it will
achieve and hides their achievement behind an interface.

– Intermediary (modifiability). The proxy acts as an intermediary that will buffer
changes to the method invocation.

– Binding time (modifiability). The active object pattern assumes that requests for
the object arrive at the object at runtime. The binding of the client to the proxy,
however, is left open in terms of binding time.

– Scheduling policy (performance). The scheduler implements some scheduling
policy.

REliable, INtelligent & Scalable Systems

Relationship of Tactics
to Architectural Patterns

• Any pattern implements several tactics, often concerned with different
quality attributes, and any implementation of the pattern also makes choices
about tactics.
– For example, an implementation could maintain a log of requests to the active

object for supporting recovery, maintaining an audit trail, or supporting
testability.

• The analysis process for the architect involves understanding all of the
tactics embedded in an implementation, and the design process involves
making a judicious choice of what combination of tactics will achieve the
system's desired goals.

REliable, INtelligent & Scalable Systems
References

• Software.Architecture.In.Practice.2nd.Edition

Thank You!

